# Purchase Productivity in Dutch Youth Care:

Locally Least Squares Frontier Method Applied to Municipality Data

Jos Blank EWEPA XVIII, Faro, june 2024

https://www.ipsestudies.nl/wp-content/uploads/2024/06/AR2301-Purchase-Productivity-in-Youth-Care-Complete.pdf



#### **Outline**

- About youth care in the Netherlands;
- Research questions;
- Methodology;
- Data;
- Results;
- Conclusions.



### Characteristics of youth care in the Netherlands

- ☐ 1. Types of youth care:
  - ✓ Youth aid (physical and mental issues);
  - ✓ Youth protection (child abuse);
  - ✓ Rehabilitation (youth crime).
- ☐ Responsible authority: municipalities;
- ☐ Services generally provided by private care firms;
- ☐ Purchases by municipalities by tendering.

### Research questions

- ☐ What is the cost efficiency of providing youth care services?
- ☐ What are the main purchase features that affect cost efficiency of youth care services?



### Methodology: cost model



### Methodology: cost model

$$obeff_l = \exp[-\sum_k \theta_k z_l] \tag{4}$$

 $z_{dtk}$  = characteristic k of department d at time t;

See Alvarez, A., Amsler, C., Orea, L., & Schmidt, P. (2006). Interpreting and testing the scaling property in models where inefficiency depends on firm characteristics. *Journal of Productivity Analysis*, 25(3), 201–212.

$$unobseff_l = \frac{\exp(-\hat{v}_l)}{p_{90}[\exp(-\hat{v}_l)]} if \ expression \le 1, otherwise \ eff_l = 1$$
 (5)

Where:

 $\widehat{v}_l$  = observed residual from regression analysis for municipality l ;

p90 = 90<sup>th</sup> percentile.

(adjusted COLS)



### Methodology: locally weighted least squares

- ✓ Weighted regression for each municipality separately
- ✓ Weights based on distance to observation under investigation

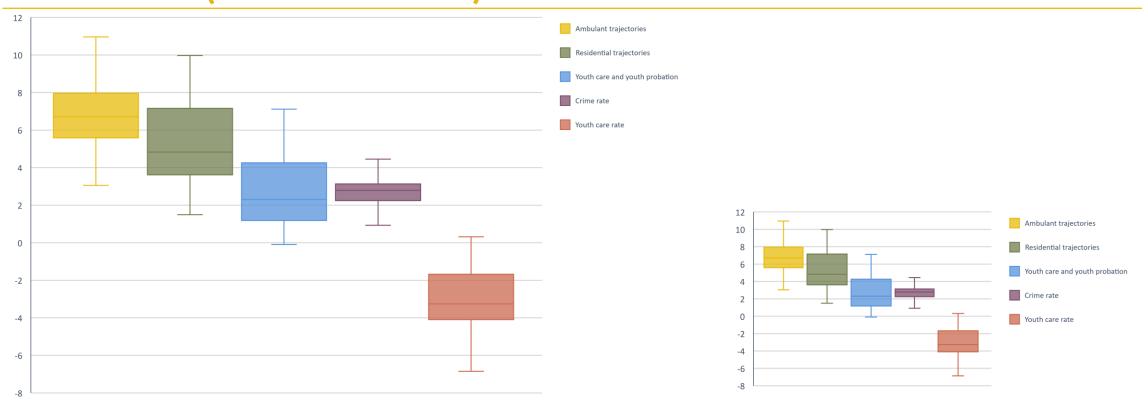
$$weight_i = \left[1 - \left(\frac{d_{il}}{maxd_l}\right)^3\right]^3 \, \forall i \in \omega(l), otherwise \ weight_i = 0 \tag{6}$$

$$d_{il} = \sum_{m} |y_{im} - y_{lm}| \tag{7}$$

With:

$$d_{il}$$
 = distance from I to I

$$\omega(l)$$
 = set of nearest neighbours of l




### **Data**

| Variable                                    | Mean   | St. Dev. | Minimum | Maximum |
|---------------------------------------------|--------|----------|---------|---------|
| Inputs                                      |        |          |         |         |
| Total cost (x 1,000 euro)                   | 15,045 | 22,730   | 205     | 26,800  |
| Production                                  |        |          |         |         |
| Ambulant trajectories                       | 1,745  | 2,497    | 10      | 27,765  |
| Residential trajectories                    | 149    | 205      | 0       | 2020    |
| Youth care and youth probation              | 156    | 255      | 0       | 2910    |
| Environment                                 |        |          |         |         |
| Crime rate (crimes per capita)              | 0.03   | 0.01     | 0.01    | 0.07    |
| Youth care rate (youth with care per capita | 0.15   | 0.03     | 0.06    | 0.27    |
| 0-18 years)                                 |        |          |         |         |
| Purchasing features                         |        |          |         |         |
| Open house                                  | 0.34   | 0.42     | 0       | 1       |
| Dialogue and Zealand                        | 0.44   | 0.43     | 0       | 1       |
| Intermediate access                         | 0.51   | 0.39     | 0       | 1       |
| Budget constraint                           | 0.13   | 0.29     | 0       | 1       |
| Production funding                          | 0.62   | 0.36     | 0       | 1       |
| Integrality Social support Act              | 0.27   | 0.38     | 0       | 1       |
| Collaborating municipalities                | 11.08  | 4.7      | 1       | 21.57   |
| Duration of contract (years)                | 2.86   | 1.1      | 0.93    | 5       |



## Estimated parameters production and environment variables (and t-values)

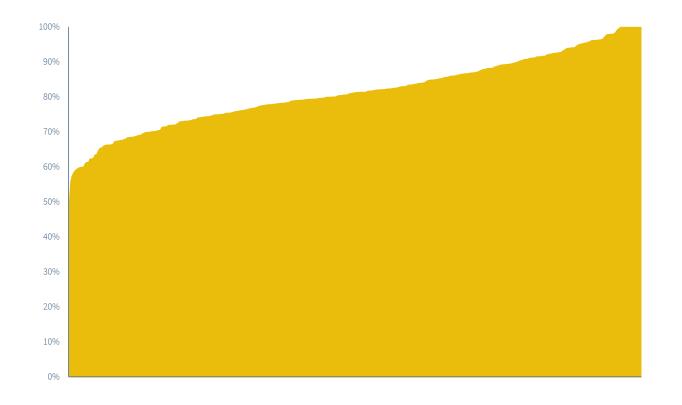





### Figure 3 Parameter estimates of effects of purchasing features on cost (and t-values)






### Figure 5 Purchase features related efficiency scores



Mean = 0.80



### Figure 6 Unobserved efficiency scores



Mean = 0.78



### **Quality/outcome effects**

Correlation between "completion as planned" and cost efficiency → rejected

Correlation between "repeated recourse" and cost efficiency -> positive



#### Conclusions

- Significant variations in the cost efficiency of youth care provision;
- Cost efficiency partially attributed to differences in the design of purchase policies.

Instruments that work:

- negative effect of a framework agreement with intermediate access;
- open house procedure has a positive effect on cost efficiency
- No trade-off between quality and cost efficiency (limited research)
- There also are some relevant environmental variables (crime rate, entrance selection)



### Thank you

Questions?

